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Preface 

In recent decades we have been witnessing the dynamic evolution in the financial 

engineering1, which is a multidisciplinary field involving applied mathematics, 

computer science, statistics and economic theory. The attention was mostly given 

to the areas of corporate finance, pricing of derivatives and structured products, 

financial regulation, portfolio and risk management and algorithmic trading. 

The practice of financial engineering has also been subject to a criticism in 

recent years. Probably, the most know is Taleb (2008), which is generally 

perceived as the criticism of a current state of quantitative financial models. 

However, Taleb does not state the pointlessness of the quantitative models. Rather, 

he is pointing out that: i) for contemporary models the probabilities of extreme 

events, which he calls black swans, are generally underestimated; ii) estimation of 

these probabilities from historical observations is nearly impossible; iii) we, as a 

mankind, are prone to find rules and causes in what was purely random (he says 

that we are fooled by the narration fallacy), for these phenomena see also Taleb 

(2013). To conclude, Taleb is pointing out that the contemporary quantitative 

models are not panacea and should be taken with moderation. We can, however, 

add that imprecise models are better than no models at all. On the other hand, the 

advantage of the quantitative models is that they can be statistically tested.2 

The book is focused on the essential part of financial engineering, which is 

financial time series modelling and its application in portfolio management and 

risk management. Contemporary state of the art of financial time series modelling 

is connected to the Efficient Market Hypothesis according to which prices fully 

reflect all available information and hence are unforecastable, see Samuelson 

(1965) and Fama (1965a, 1965b, 1970). A strong form of this hypothesis presumes 

asset returns to be even independent and identically distributed, see e.g. Fama 

(1970). However, note that works, such as Lo and MacKinlay (2011) and Lo et al. 

(2000), provided compelling evidence that markets are not efficient, i.e. price data 

do possess statistical properties that noticeably deviate from the models of random 

price evolution. 

In the book we explain principles and models of financial time series 

modelling, as well as provide reader with immediate practical applications of these 

principles in programming language. The example codes are written in Matlab 

environment (for brief description of the environment and the programming 

language see Appendix A). We are aware that there are some books already written 

on the topic of financial engineering providing applications in Matlab, see for 

1 Sometimes also addressed as a quantitative or mathematical finance. 
2 Good example is a technical analysis. If the technical analysis is performed subjectively, 

the accuracy can be hardly tested. However, if the technical rules are clearly defined, the 

accuracy can be easily back-tested on the historical data. However, even in this case the 

results should be taken carefully and one should be aware of possible data-snooping bias. 

A well written reference in this field is Aronson (2006). 
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instance Chan (2008, 2013), Huynh et al. (2008) or Kienitz and Wetterau (2012). 

However, in these books the discussed topics and codes are focused rather 

specifically. In this book we want to provide the reader with both the knowledge 

of selected approaches in financial time series modelling and fully working 

programs3, which can be directly utilized without any knowledge about 

programming in Matlab. Thus, the book can be utilized by both undergraduate and 

postgraduate students in finance and computer science as the learning reference of 

Matlab programming language. As the presented models and algorithms are rather 

simple, we also include the ideas for further research and development at the ends 

of chapters where it is possible. We hope that the book can provide some 

interesting ideas for diploma theses elaboration. 

The book is structured into five chapters. In order to provide fully working 

algorithms we had to start at the beginning with the data acquisition, which is the 

content of the first chapter. In the book we utilize freely available data sources 

such as Prague Stock Exchange (PSE), Czech National Bank (CNB), Yahoo 

Finance and TrueFX website. When we download the particular time series it is 

necessary to combine them together, so that we create an matrix in which one 

dimension of the matrix represents the particular symbols and second dimension 

of the matrix represents time (see subchapter 1.3). For some data sources, mainly 

for tick-by-tick data, these data have to be first resampled in order to be easily 

manipulated. Thus, we briefly discuss also the data resampling issue (subchapter 

1.2). 

In the second chapter we describe the approaches and models applicable for 

modelling of returns. However, the returns must be computed first. Speaking about 

returns, we can distinguish discrete and continuously compounded returns. The 

difference is not only in their definition, and thus in computation, but also in the 

way they can be aggregated over time and the way the portfolio return can be 

computed (see subchapter 2.1.4). The historical returns calculation and estimation 

of future returns are described in subchapter 2.1. The returns modelling itself is 

described through subchapters 2.2–2.6. 

Generally, when modelling financial time series, we have to deal with 

empirical evidences.4 Firstly, the empirically observed returns of financial time 

series are characterized by fatter tails compared to the Gaussian (normal) 

distribution. Thus, it can be concluded, in line with Mandelbrot (1963b), that 

Gaussian distribution is not appropriate for modelling of financial returns. We 

address this issue by introducing Student distribution (subchapter 2.2.2) and Lévy 

family of models (subchapter 2.3). Secondly, empirical volatility of returns is not 

constant over time, but is rather clustered. Thus, for the same asset, the periods 

with high volatility (high profits/losses) can be seen as well as the periods in which 

volatility is low (the profits/losses are close to zero). This issue can be tackled by 

volatility modelling. We address this feature in subchapter 2.4. Lastly, we have to 

3 The programs presented in this book are freely obtainable upon an e-mail request to the 

author at ales.kresta@vsb.cz. 
4 See e.g. Cont (2001) for the summary of empirical properties. 
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deal with the dependency among particular time series. Generally, the returns are 

not correlated strongly when they are around zero, however, in the tails the 

correlation increases. Appropriate tool for dependency modelling are copula 

functions based on Sklar’s theorem, see Sklar (1959, 1973), which allows to 

decompose the joint distribution into marginal distributions and copula function. 

The distribution of particular time series is then modelled by marginal 

distributions, while dependency is tackled only by copula function. The copula 

function and dependency modelling are discussed in subchapter 2.5. 

In the third chapter we introduce simple mean-variance portfolio optimization 

framework as introduced by Markowitz (1952). In this framework the portfolios 

are described by only two parameters – the mean and the standard deviation of 

future one-period-return probability distribution. Concerning these two 

parameters we can distinguish three set of portfolios: feasible, efficient and 

optimal. Knowing the particular investor's risk profile we can optimize portfolio 

composition and find directly optimal portfolio. However, without this knowledge, 

the best we can obtain is only Pareto efficient set of portfolios. The search for 

efficient set of portfolios is first illustrated by a rather naive method (subchapter 

3.2) consisting of stratification and brute-force method.5 Then, the efficient set of 

portfolios is obtained as the solution to the quadratic optimization problem 

(subchapter 3.3). At the end of the chapter we define optimal portfolio 

optimization problem for the case that we know investor's risk profile. 

In the fourth chapter we apply the optimal portfolio optimization problem to 

real datasets of American stocks traded at NYSE and Nasdaq (description of 

dataset can be found in subchapter 1.3). However, before presenting empirical 

results (subchapter 4.3), we first define basic performance measures (subchapter 

4.2) such as maximum drawdown and Sharpe and Rachev ratios. Then the 

portfolios performances are studied for different risk profiles, portfolio 

recalibration periods and historical windows of parameters estimation. 

When holding the particular portfolio, the investors are interested in the risk 

which is connected to their position. The same holds for financial institutions, 

which have to compute the risk arising from the portfolio of financial instruments 

they hold. The risk estimation and its backtesting is described in the fifth chapter. 

Although there were introduced many risk measures in the literature, the most 

discussed measures nowadays are Value at Risk (see subchapter 5.1.1) and 

Conditional Value at Risk (see subchapter 5.1.2). Particularly Value at Risk is 

nowadays mostly utilized measure of risk – for financial institutions even 

obligatory, see Basel II and Solvency II regulations. We can generally distinguish 

three groups of methods for risk estimation. They are historical simulation, 

analytical solution and Monte Carlo simulation. While historical simulation 

5 In computer science, brute-force search is a very general problem-solving technique that 

consists of systematically enumerating all possible candidates for the solution and checking 

whether particular candidates satisfy the problem's statement. 
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(subchapter 5.2.1) is a nonparametric6 method, in the latter two methods we 

assume returns to be distributed according to particular parametric probability 

distribution. The difference is whether we are able to obtain the analytical formula 

of risk quantification (subchapter 5.2.3) or Monte Carlo simulation has to be 

applied (subchapter 5.2.4). These methods have their advantages and 

disadvantages. Also their accuracy can differ for different portfolios. The accuracy 

is evaluated by the so-called backtesting procedure (see subchapter 5.3). At the 

end of the chapter we provide the empirical results of particular estimation 

methods for dataset consisting of American stocks included in Dow Jones 

Industrial Average index. In performed analyses we back-tested the methods in 

the period from November 30, 1998 until September 1, 2014, i.e. almost sixteen 

years of historical data. 

The book was written as the part of the research supported by the European 

Social Fund under the Opportunity for young researchers project 

(CZ.1.07/2.3.00/30.0016) as well as by GA ČR (Czech Science Foundation – 

Grantová Agentura České Republiky) under the project no. 13-18300P. All the 

support is greatly acknowledged and appreciated. 

6 No specific parametric distribution of returns is assumed. We rather work with the 

empirical distribution of returns. 
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Denotations, symbols and 

abbreviations 

C copula function; 
GaC  express Gaussian copula function, ,

StC   express

Student copula function and  1
,

ArchC
 

  express Archimedean copula 

function 

CVaR  Conditional Value at Risk at given probability level   

e  the standardized residuals in filtered historical simulation method 

 E R expected return, i.e. the mean of the probability distribution of returns 

f probability density function; tf  for Student probability distribution, 

Nf  for Gaussian probability distribution 

F cumulative distribution function of a random variable; tF  for Student 

probability distribution,   for Gaussian probability distribution 

k parameter stating the level of risk aversion of the investor 

 l t subordinator process in Lévy models 

L  likelihood function 

LR  specified likelihood ratio, e.g. 
KupiecLR  for likelihood ratio of Kupiec's 

test 

m the length of time series left for the parameters estimation, i.e. the 

length of data not utilized for backtesting procedure as they are 

utilized for initial parameters estimation 

n number of backtesting observations; 1n  refers to quantity of 

exceptions (VaR violations), 0n  refers to quantity of observations in 

which exception did not happen  

iP price of the i-th asset; the price of the i-th asset in specified time t is 

addressed as ,i tP

PP portfolio value at time; the value of the portfolio in specified time t is 

addressed as ,P tP

Q covariance matrix 

r continuously compound return; the portfolio returns are referred as Pr

and assets returns as ir

R discrete return; the portfolio returns are referred as PR , assets returns 

as iR , risk-free rate as RFR  and returns of a benchmark as BR
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t current time (or alternatively some specified time) 

T final time of the interval 

u random returns normalized by cumulative distribution function 

v  quantity of particular asset in portfolio 

VaR  Value at Risk at given probability level   

w relative amount of wealth invested in particular asset when referred 

ex-post 

W wealth and also the value of the portfolio; wealth in particular time is 

addressed either as  W t  or tW

x relative amount of the wealth invested in particular asset when 

referred ex-ante 

,X Y  random variables 

  probability level of VaR forecast; 1   express the confidence level 

of VaR, i.e. the probability with which the loss will not exceed the 

estimated VaR 

  gamma function 

  discrete time step 

  degrees of freedom in Student distribution 

  probabilities of exceptions occurring; 
obs observed probability of

exceptions occurring, 
ex expected probability of exceptions

occurring, 
01 conditional probability of exceptions occurring

  correlation coefficient ( ,X Y states the correlation coefficient of 

random variables X and Y); alternatively risk measure 

  standard deviation 

2 variance of random variable 

,X Y covariance between random variables X and Y 

  some specified time 

  generator function utilized in the definition of Archimedean copula 

functions; alternatively characteristic function of Lévy models 

distributions 

 cumulative distribution function of normal distribution; 

s  refer to cumulative distribution function of standard normal 

distribution 
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AR(O)-GARCH(P,Q) autoregressive process of order O with innovations 

modelled by GARCH process of order P, Q 

 ,N    normal distribution with mean   and standard deviation

 ;  0,1N  is standard normal distribution, i.e. normal

distribution with zero mean and unit variance 

 , , ,NIG     normal inverse Gaussian distribution defined by 

parameters  ,  ,   and   

 , , ,NIG     alternative definition of Normal inverse Gaussian 

distribution as a subordinated Lévy model with 

parameters  ,  , v  and   

 , , ,VG     variance-gamma probability distribution defined as a 

subordinated Lévy model with parameters  ,  , v  and 

  

 Pr x probability that x happens 

cdf cumulative distribution function 

inf infinity 

pdf probability density function 

AIC Akaike information criterion 

AR autoregressive model 

BIC Bayesian information criterion 

CML canonical maximum likelihood 

CNB Czech National Bank 

CVaR Conditional Value at Risk 

CZK Czech crown currency 

DD drawdown 

DJIA Dow Jones industrial average price index 

EMLM exact maximum likelihood method 

EUR euro currency 

FHS filtered historical simulation 

GARCH generalized autoregressive conditional 

heteroskedasticity model 

HS historical simulation method 

IFM inference function for margins 

K-test Kupiec's test 
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LR likelihood ratio 

MC simulation Monte Carlo simulation 

MDD maximum drawdown 

NYSE New York stock exchange 

OHLC open, high, low, close values 

PSE Prague stock exchange 

PX Prague stock price index 

PX-GLOB  Prague stock broad-based price index 

PX-TR Prague stock total return index 

RR Rachev ratio 

S&P 500 Standard & Poor's 500 price index 

SL stop loss 

SR Sharpe ratio 

TP take profit 

URL uniform resource locator 

USD US dollar currency 

VaR Value at Risk 



List of Utilized Matlab Built-in 

Functions 

aicbic returns the values of Akaike information criteria (AIC) and Bayesian 

information criteria (BIC) 

area produces a 2-D stacked area plot suitable for showing the 

contributions of various components to a whole 

axis controls axis scaling and appearance 

binocdf returns the value of binomial cumulative distribution function 

binopdf returns the value of binomial probability density function 

break terminates the execution of while or for loops 

cdf returns the value of cumulative distribution function of the specified 

probability distribution 

ceil rounds the input toward plus infinity 

clc clears the Command Window (previously submitted commands are 

still stored in Command History panel) 

clear clears (the specified) variables and functions from the memory 

clear all clears all variables and functions from the memory 

continue skips the execution of actual for or while loop's iteration and passes 

the control to the next iteration 

contour plots the contour graph 

copulacdf returns the value of cumulative distribution function for the specified 

copula function 

copulafit fits the parameters of specified copula function to data 

copulapdf returns the value of probability density function for the specified 

copula function 

copularnd generates random numbers from the specified copula function 

corr returns correlation matrix of the specified data 

cov returns the covariance matrix of the specified data 

cumprod returns cumulative products of the input elements, works both with 

vectors and matrices 

cumsum returns cumulative sums of the input elements, works both with 

vectors and matrices 

dateaxis formats specified axis labels to the specified date/time format, 

interchangeable with datetick 

datenum converts date vector or char array into serial date number 

datestr converts serial date number to the date string of specified format 



XVIII List of Utilized Matlab Built-in Functions 

datetick formats specified axis labels to the specified date/time format, 

interchangeable with dateaxis 

diff returns the differences between subsequent elements in the specified 

vector or matrix 

dir returns the list of files in the specified directory 

eps returns the smallest distinguishable change in floating point number 

exp returns the value of exponential function 

eye returns the identity matrix of the specified size 

fclose closes the specified file, see also fopen 

figure creates a new figure window 

fix rounds the input toward zero 

flipud flips the matrix or vector upside down 

floor rounds the input toward minus infinity 

fmincon finds the minimum of the function under the linear and nonlinear 

constraints 

fopen opens the specified file for read/write access, see also fclose 

fprintf writes specified formatted data as the output to the Command 

Window or a text file 

garchfit estimates the parameters of specified ARMAX-GARCH model based 

on the input data 

garchpred forecasts specified ARMAX-GARCH model responses 

garchset sets the structure of ARMAX-GARCH models 

garchsim simulates ARMAX-GARCH model responses 

hold on holds the current plot and axes properties so that subsequent graphs 

are plotted over the existing graph 

chi2cdf returns value of chi-square cumulative distribution function 

icdf returns the value of inverse cumulative distribution function for a 

specified probability distribution 

importdata loads the data from the specified file into the workspace 

inf returns the IEEE arithmetic representation for positive infinity, which 

is produced by operations like dividing by zero, e.g. 1.0/0.0, or from 

overflow, e.g. exp(1000) 

interp1 returns the 1-D interpolated data 

kurtosis returns the sample kurtosis of the input values 

legend displays specified legend in the current graph 

length returns the length of a vector or the maximum size of an array, 

length(X) is equivalent to the command max(size(X)) 

log returns the value of natural logarithm 

log10 returns the value of the decimal logarithm 
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max returns the maximum value of the vector or maximum values in the 

arrays along the specified dimension 

mean returns the average (mean) value of the vector or average values in the 

arrays along the specified dimension 

median returns the median value of the vector or median values in the arrays 

along the specified dimension 

min returns the smallest value of the vector or smallest values in the arrays 

along the specified dimension 

mle returns maximum likelihood estimates of parameters of the specified 

probability distribution  

nan returns the array of the specified size containing values of NaN – the 

IEEE arithmetic representation for Not-a-Number, which is obtained 

as a result of mathematically undefined operations like 0.0/0.0 and 

inf–inf 

normfit estimates parameters and confidence intervals for normal distribution 

normrnd returns the array of the specified size containing pseudorandom 

numbers drawn from the normal (Gaussian) distribution with 

specified mean and standard deviation, see also randn 

nthroot returns the specified root of the input, nthroot(a,b) provides the same 

result as power(a,1/b) 

num2str converts number into string 

ones returns the array of specified size containing values of one 

optimset creates or changes the structure of optimization parameters 

portopt computes the mean-variance efficient frontier 

pdf returns the value of probability density function of the specified 

probability distribution 

plot plots vector or matrix data (vertical axis) versus a vector data 

(horizontal axis) preserving the linear scales of the axes 

power returns specified input real number powered by another input real 

number 

prod returns the products of the elements in the array along the specified 

dimension 

rand returns the matrix of specified size containing pseudorandom 

numbers drawn from the uniform distribution on the open interval 

(0,1) 

randn returns the matrix of specified size containing pseudorandom 

numbers drawn from the standard normal (Gaussian) distribution, see 

also normrnd 

repmat creates a larger array, which consists of specified quantity of input 

array copies 

reshape reshapes the input array in the specified manner 
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round rounds the input toward nearest integer 

save saves all the variables from the current workspace to the specified 

Matlab formatted binary file 

semilogx is the same as plot function, except for that a logarithmic scale is used 

for the horizontal axis 

semilogy is the same as plot function, except for that a logarithmic scale is used 

for the vertical axis 

size returns array size – a vector of dimension lengths 

skewness returns the sample skewness of the input values 

sort sorts the input array along the first non-singleton dimension in 

ascending order 

sortrows sorts the rows of the matrix as a groups in ascending order  

sqrt returns the value of the square root of the input variable 

squeeze removes all the singleton dimensions (dimensions of the size one) 

from the array, matrices are unaffected by the function 

std returns the values of standard deviations for each column of the input 

matrix 

subplot breaks the figure window into the specified quantity of tiles, plot the 

axes in each tile and selects the specified tile for the current plot 

sum returns the sums of the elements in the array along the specified 

dimension 

surf plots 3-D coloured surface graph 

textscan reads formatted data from the specified text file or string 

tic starts a stopwatch timer, see function toc 

toc reads the value of stopwatch timer, see function tic 

union returns the combined values of the two vectors (input variables) 

without repetitions 

upper converts string to uppercase 

urlwrite downloads the URL content and saves it as a file 

xlabel writes the label to the x-axis 

ylabel writes the label to the y-axis 

zeros returns the array of specified size containing values of zero 







1 

Data Acquisition 

For any analysis the first inevitable step is the data acquisition. In this chapter we 

explain from where and how to download the data. We utilize free sources of data. 

As the obtained data are usually isolated time series it is necessary to combine 

them together. Sometimes it can be an easy task, as there are no missing data and 

downloaded time series can be directly put together into a matrix (see subchapters 

1.3.2 and 1.3.3), however, in most cases there are missing data, which have to be 

determined. In the example of small indices dataset we utilize the linear 

interpolation method (subchapter 1.3.1). 

The datasets obtained in this chapter are used in this book for portfolio 

optimization backtesting (chapter 4) and risk estimation backtesting 

(chapter 5). 

1.1 Imports from Free Sources 

There are many available free data sources on the internet. In this book we utilize 

following freely available data sources: Prague Stock Exchange website 

(subchapter 1.1.1), Yaohoo Finance website (subchapter 1.1.2), Czech National 

Bank website (subchapter 1.1.3) and TrueFX website (subchapter 1.1.4). Our 

intention is not to provide the complete list of the available data sources, but rather 

to give the examples of some easily utilized ones. 

1.1.1 Prague Stock Indices from pse.cz 

The Prague Stock Exchange (henceforth PSE) calculates and publishes three 

national indices in order to provide investors and the wider public with concise 

information on the performance of the Czech regulated market. They are: 

 PX – a tradable price index made up of the most actively traded blue-

chips of the Prague Stock Exchange;

 PX-TR – a total return index with the same base as PX index;

 PX-GLOB – a broad-based price index comprising stocks traded on a

regulated stock market of the Prague Stock Exchange.

Further we focus on PX and PX-TR indices as they are composed from the 

most actively traded blue-chips for which the liquidity is not an issue. Both PX 
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and PX-TR indices are the official indices of the Prague Stock Exchange. They 

are a capitalization-weighted price and total return7 indices made up of the most 

traded blue chips at the Prague Stock Exchange.8 The indices are calculated in 

CZK and disseminated in real-time by the Prague Stock Exchange. They are 

designed as a tradable indices to be used as an underlying asset for structured 

products and for standardized derivatives.9 The base of the indices is mutual. 

Although PX-TR index was launched on March 24, 2014, its values were 

calculated back to March 20, 2006. At that date it took the same value as PX index. 

The history of the indices can be downloaded from the following addresses: 

 http://ftp.pse.cz/Info.bas/Cz/PX.csv,

 http://ftp.pse.cz/Info.bas/Cz/PX-TR.csv,

 http://ftp.pse.cz/Info.bas/Cz/PX-GLOB.csv,

and the format of the files possess following characteristics: 

 file is in date, value, change format,

 the comma is used as the delimiter,

 dot is used as the decimal sign,

 date is in format dd.mm.yyyy, where dd are days, mm are the month

numbers and yyyy stands for years.

Due to these characteristics, it is easy to import the data as shown by Program 1–

1, which also downloads the csv file from the internet and saves it to the current 

folder. 

Program 1–1 Import of PX index history values 

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX.csv','data_PX.csv'); 

import=importdata('data_PX.csv'); %import the file 

PX.values=import.data(:,1); %obtain the values of PX index 

for a=1:size(import.textdata,1) 

   PX.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy'); 

end; 

clear import; 

save data_PX; 

%%plot the imported data 

figure; 

plot(PX.dates, PX.values); 

datetick('x'); 

xlabel('Date'); 

ylabel('PX Value'); 

Obviously also other indices can be downloaded and imported in the same way, 

see Program 1–2 for PX-TR index history download and Program 1–3 for 

PX-GLOBAL index history download. 

7 Due to the consideration of dividend payments the index reflects the total return of the 

underlying portfolio. 
8 The actual base of PX index and PX-TR index can be found at http://ftp.pse.cz/ 

Info.bas/Cz/PX.pdf and http://ftp.pse.cz/Info.bas/Cz/PX-TR.pdf. 
9 http://en.indices.cc/cooperations/pse/px-tr/ 



Data Acquisition 3 

Financial Engineering in Matlab: Selected Approaches and Algorithms 

Program 1–2 Import of PX-TR index history values 

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX-TR.csv',... 

'data_PX-TR.csv');

import=importdata('data_PX-TR.csv'); %import the file

PXTR.values=import.data(:,1); %obtain the values of PX-TR index

for a=1:size(import.textdata,1)

   PXTR.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy');

end;

clear import;

save data_PX-TR; 

%%plot the imported data

figure;

plot(PXTR.dates, PXTR.values);

datetick('x');

xlabel('Date');

ylabel('PX-TR Value');

When we have downloaded the data, it would be interesting to compare the 

evolution of the both PX and PX-TR indices. The comparison is made in Figure 

1–1. The graph starts on March 20, 2006 when both indices have the same value 

of 1,554.6 and ends on September 30, 2014 when the value of PX index was 991.4 

and PX-TR 1,441.01. We see that both indices decreased over the examined period 

with the huge drop in the second half of 2008 (financial crisis). While PX index 

hasn't recovered yet, PX-TR index values has been steadily increasing to its 

starting value. The difference in the indices' values is caused by the inclusion of 

dividend payments in PX-TR index.10 

Program 1–3 Import of PX-GLOBAL index history values 

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX-GLOB.csv',... 

'data_PX-GLOB.csv');

import=importdata('data_PX-GLOB.csv'); %import the file

PXGLOB.values=import.data(:,1); %obtain the values of PX-GLOBAL

for a=1:size(import.textdata,1)

  PXGLOB.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy');

end;

clear import;

save data_PX-GLOB; 

%%plot the imported data

figure;

plot(PXGLOB.dates, PXGLOB.values);

datetick('x');

xlabel('Date');

ylabel('PX-GLOBAL Value');

10 Many blue-chip stocks traded at Prague Stock Market pays high dividends. Note that 

dividend pay-out ratios was high for ČEZ, O2 C.R., PHILIP MORRIS ČR and others. 
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Figure 1–1 Evolution of Prague stock indices 

1.1.2 Stock Financial Time Series from Yahoo Finance 

In order to obtain the financial time series of stocks or market indices, also the 

finance.yahoo.com web site can be utilized. Quotes of many stocks can be 

obtained through this website and the available stocks are not limited to US 

markets but also European and Asian stock data can be obtained there.  

The advantage of this source can be found in the fact that finance.yahoo.com 

provides data, which are adjusted for splits and dividends paid.11 The disadvantage 

is that the YAHOO provides data only for stocks which are currently being traded, 

i.e. it is impossible to obtain data for the companies which went bankruptcy or left 

the market from any reason. This makes data, if not threated correctly, prone to 

the so-called survivorship bias – for further explanation see Chan (2008). 

Data in Yahoo Finance data source can be accessed through *.csv files as in 

the case of Prague stock market indices. It is available at the following URL: 

http://ichart.finance.yahoo.com/table.csv followed by the specification of symbol, 

periodicity of the data and period we want to download. This interface is utilized 

in Program 1–4 which downloads the data for specified symbol in specified 

periodicity over the periods specified by the rest of the input parameters.12  

11 When looking at the historical prices refer to the last column Adj Close. 
12 Another code for downloading YAHOO Finance data can be found for instance at: 

http://luminouslogic.com/matlab_stock_scripts/get_hist_stock_data.m. The mentioned 

algorithm does not save the downloaded data to local folder as it applies other Matlab 

functions for data download. 
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Program 1–4 Function downloadyahoo.m 

function [date,open,high,low,close,vol,adjclose]=... 

downloadyahoo(symbol, periodicity, from_year, from_month,... 

from_day, to_year, to_month, to_day)

% download the data from finance.yahoo.com

% period can be 'd' for daily data, 'w' for weekly data, 'm' for 

% monthly data

% Create URL string and download csv file

url_string = ['http://ichart.finance.yahoo.com/table.csv?s='... 

upper(symbol) '&a=' num2str(from_month-1) '&b='... 

num2str(from_day) '&c=' num2str(from_year) '&d='... 

num2str(to_month-1) '&e=', num2str(to_day) '&f... 

num2str(to_year) '&g=' periodicity '&ignore=.csv'];

urlwrite(url_string,['data_' upper(symbol) '.csv']);

import=importdata(['data_' upper(symbol) '.csv']);

delete(['data_' upper(symbol) '.csv']); 

% Reverse to normal chronological order

open = flipud(import.data(:,1));

high = flipud(import.data(:,2));

low = flipud(import.data(:,3));

close    = flipud(import.data(:,4));

vol = flipud(import.data(:,5));

adjclose = flipud(import.data(:,6));

for a=length(open):-1:1

  date(length(open)-a+1)=datenum((import.textdata{a+1}),... 

'yyyy-mm-dd'); 

end; 

end

This function returns OHLC13 time series as well as the time series of volumes 

(vol), adjusted close (adjclose) and corresponding dates. Reader should note that 

while general convention is to sort time series from the oldest to the most recent 

record, the Yahoo provides the data in opposite order, thus data have to be flipped 

(function flipud). 

1.1.3 Foreign Exchange Rates from CNB 

Another source of the files which can be directly imported into Matlab is the 

website of the Czech National Bank (CNB).14 This time series consist of foreign 

exchange rates (FX rates) of foreign currencies to Czech crown with the daily 

periodicity. The data can be viewed in a web browser or downloaded in two 

formats: Excel spreadsheet or text file. We can utilize text file option and create a 

function which will download and import the data, see Program 1–5. 

13 Open-high-low-close prices. 
14 http://www.cnb.cz/en/financial_markets/foreign_exchange_market/exchange_rate_fixin 

g/selected_form.jsp 
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Program 1–5 Function downloadCNB.m 

function [date,FXrate]=downloadCNB(symbol,from_year,... 

from_month,from_day,to_year,to_month,to_day)

% Create URL string and download csv file

url_string=['http://www.cnb.cz/miranda2/m2/en/financial' ... 

'_markets/foreign_exchange_market/exchange_rate_fixing/' ... 

'selected.txt?code=' upper(symbol) '&from=' num2str(from_day)... 

'.' num2str(from_month) '.' num2str(from_year) '&to='... 

num2str(to_day) '.', num2str(to_month) '.' num2str(to_year)];

% Import csv file and obtain data

urlwrite(url_string,['data_' upper(symbol) 'CZK.csv']);

import=importdata(['data_' upper(symbol) 'CZK.csv']); 

delete(['data_' upper(symbol) 'CZK.csv']); 

FXrate=import.data;

for a=length(FXrate):-1:1

   date(a)=datenum((import.textdata{a+2}),'dd.mmm yyyy');

end;

end

1.1.4 Foreign Exchange Rates from TrueFX.com 

In this book we utilize only daily data obtained from Yahoo Finance and CNB 

website. Daily periodicity is enough for most of the analyses, however, it can be 

sometimes useful to obtain high frequency data. Even high frequency data for the 

most traded FX pairs can be obtained freely from the internet, namely two 

following sources: TrueFX15 and GAIN Capital.16 Data from both sources have to 

be downloaded manually. In the book we focus on TrueFX data source as it 

provides higher-speed download. 

As we mentioned in the previous text, the data have to be downloaded 

manually. It is due to the obligatory registration into the website. After the free 

registration we can download the data into the local folder. In Figure 1–2 we show 

the example of the data downloaded into the folder c:\import. The reader should 

note that due to high frequency of the data the size of files is around 100 MB each. 

We observed that Matlab (run on standard personal computer) can work with at 

maximum eight of these files at the same time. Thus for the proper analysis an 

access to a supercomputing facility is needed. 

15 http://truefx.com/?page=downloads 
16 http://ratedata.gaincapital.com 
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Figure 1–2 Example of the directory containing data downloaded from TrueFX website 

The format of each file possess following characteristics: 

 file is in name, date-time, bid, ask format,

 comma is used as the delimiter,

 dot is used as the decimal sign,

 date-time column is in format rrrrmmdd HH:MM:SS.FFF, where dd are

days, mm are the month numbers, yyyy stands for years, HH are the hours

value (in 24-hour format), MM minutes, SS second and FFF stands for

milliseconds.

Knowing the structure of the files we can employ function importfxdata shown in 

Program 1–6 for data import. 



8 Chapter 1 

2015 A. Kresta 

Program 1–6 Function importfxdata.m 

function [data] = importfxdata(filename)

%imports data from file specified as an imput

if exist(filename,'file')

  fid = fopen(filename);   

  import=textscan(fid,'%s %s %f %f','delimiter', ',');  

  data.name=import{1}{1};

  data.time=datenum(import{2},'yyyymmdd HH:MM:SS.FFF');

  data.bid=import{3};

  data.ask=import{4};

  fclose(fid);

else

  data=NaN;  

end

end

However, as we have seen in Figure 1–2 the financial time series are split into 

months, i.e. one file contain one month of data. However, we generally want to 

work with the data history as long as possible to obtain.17 In order to combine data 

from more than one file and import all the data files in one directory, the 

importfxdirectory function (see Program 1–7) can be applied. The input of the 

function is string variable specifying the directory in which the files are saved. 

Note that requirement of the function is that no other files (than those containing 

data and having specific format of TrueFX data source) can be saved in the 

specified directory. The function works in a simple way: first it obtains the list of 

files in the specified directory; then goes through the list and imports particular 

files applying function importfxdata (see Program 1–6). 

Program 1–7 Function importfxdirectory.m 

function [ data ] = importfxdirectory(directoryname)

% imports the whole directory

list=dir([directoryname '\*.csv']);

for a=1:length(list)

  lists{a}=[directoryname '\' list(a).name];

end

lists=sortrows(lists');

for a=1:length(lists)

  if a==1

    data=importdata(lists{1});

  else

 dataimported=importdata(lists{a});

    data.time=[data.time; dataimported.time];

    data.ask=[data.ask; dataimported.ask];

    data.bid=[data.bid; dataimported.bid];

  end;

end;

end

17 This is generally true, however, when working on personal computer we also have to take 

into consideration computational and memory requirements. 
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Figure 1–3 Price evolution and different types of resampling of EUR/USD FX pair 

1.2 Data Resampling 

While tick-by-tick data provide the most precise information about the evolution 

of the time series, they are also of huge size to store. Usually not all the information 

is needed and thus they can be compressed. The mostly utilized and well-known 

method is a time based resampling. Under this approach we take the values of the 

prices/values in equidistant time moments. However, we can do a price based 

resampling and instead of taking the fixed period, we fix the price changes 

between two subsequent points, i.e. the price can go either up or down by a given 

increment (threshold), see Figure 1–3. 

In order to express the resampling mathematically, assume a continuous path 
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As can be seen from the Figure 1–3 in both resampling methods some 

information is lost. In order not to discard important information in time based 

resampling, we usually save not only the prices at the equidistant time points, but 

also minimum and maximum prices between two subsequent points (in the period 

between them). By this way we obtain open/high/low/close (OHLC) prices. The 

typical period lengths are 1, 5 and 15 minutes, 1, 4 and 8 hours, a day, a week or 

a month. 
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1.2.1 Time Based Resampling 

If we want to reduce the amount of data stored, we usually resample the data in 

time. This is practical reasoning as we are later usually concerned with the 

question what the price was at some particular moment of time. Then we look-up 

the price at the closest sampled time point. In Program 1–8 we included the 

function resamplebytime which can be applied to resample the tick-by-tick data 

obtained from TrueFX data source. 

Program 1–8 Function resamplebytime.m 

function [open,high,low,close]=resamplebytime(time,data,... 

timeresampled)

% resamples given time series by time

open =zeros(1,length(timeresampled)-1);

high =zeros(1,length(timeresampled)-1);

low  =zeros(1,length(timeresampled)-1);

close=zeros(1,length(timeresampled)-1);

counter=1;

while (time(counter)<timeresampled(1))

    counter=counter+1;

end

for a=2:length(timeresampled)

    open(a-1)=data(counter);

    low(a-1)=open(a-1); 

    high(a-1)=open(a-1);

    while (time(counter)<timeresampled(a))

 low(a-1) =min(low(a-1) ,data(counter));

high(a-1)=max(high(a-1),data(counter));

if (counter<length(time))

counter=counter+1;

else

break;

end;

    end;

    close(a-1)=data(counter);

end;

end

1.2.2 Resampling by Price Movements 

However, for some applications it can be useful to undertake the different type of 

resampling. Assume for instance automated trading system, which trades (buys 

the asset) with predefined take profit18 (henceforth TP) and stop loss19 (henceforth 

SL). If the difference between TP and SL is small, for some periods (in time based 

resampling) the following situation can happen: the highest price is higher than TP 

18 The price level at which the trade is closed with the predefined profit. In the case of long 

trade position the take profit level is equal to the buy price plus minimum (predefined) 

profit. 
19 The price level at which the trade is closed in order to avoid big losses. In the case of 

long trade position the stop loss is equal to the buy price minus the maximum loss. 
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and lowest price is lower than SL. If we are in this period in the long position, we 

cannot know what happened first – whether the price went up and we closed the 

profitable trade or the price went down and the trade was closed with the loss. This 

loss of information can be important when we are backtesting the automated 

trading system with the small spread between take profit and stop loss. 

In such case, the price based resampling would be more efficient. The price 

increment (threshold) should be chosen in order to be equal to the predefined value 

of minimum profit or maximum loss (or better to its fraction such as one third 

etc.). In Program 1–9 we included the function resamplebyprice which can be 

applied to resample the tick-by-tick data obtained from TrueFX data source (see 

subchapter 1.1.4). 

Program 1–9 Function resamplebyprice.m 

function [timesampled,datasampled]=resamplebyprice(time,data,... 

starttime,tresholdup,tresholddown)

% resamples given time series by the price movements

counterdata=0; %counter for timesampled and datasampled time series

timesampled=zeros(length(time),1); %pre-alocation of variable

datasampled=zeros(length(data),1); %pre-alocation of variable

for counter=1:length(time)

    if (time(counter)<starttime) %exclude the part of time series

continue;

    end

    %first observation (dependent on starttime)

    if (counterdata==0) 

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

    end;

    %if the increase is greater than treshold then add new 

    if (data(counter)-datasampled(counterdata)>tresholdup) 

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

    end;

    %if the decrease is greater than treshold then add new

    if (data(counter)-datasampled(counterdata)<-tresholddown) 

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

    end;

end;

timesampled=timesampled(1:counterdata);

datasampled=datasampled(1:counterdata);

end
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1.3 Combination of Time Series 

In the previous subchapter we discussed the data import possibilities from various 

freely available sources. After running some of the import functions we obtain the 

one-dimensional data time series. However, for the further analysis it is necessary 

to combine these data-series into a matrix so that the particular rows represent the 

days and the columns represent particular assets. 

Further we prepare three different datasets (i.e. matrices): 

 a small indices dataset of three stock market indices (PX index, American

Standard & Poor's 500 and Japanese Nikkei 225) denominated in CZK,

 DJIA dataset of the stocks incorporated in Dow Jones Industrial Average

index, prices are denominated in USD,

 S&P 500 dataset of the stocks incorporated in Standard & Poor's 500

index, prices are denominated in USD.

As we combine different sources in the small indices dataset, the combination 

procedure is the most complex one. On the other hand, for DJIA and S&P 500 

datasets only Yahoo Finance data source is utilized, so the combination of the data 

series is easier. 

1.3.1 Small Indices Dataset 

In the small indices dataset we want to combine the indices of US stock market, 

Prague stock market and Japanese stock market. As each index is denominated in 

different currency, we need to recalculate their values (i.e. the prices) to be in 

CZK. Thus we have to combine various data sources: PSE (Program 1–1), Yahoo 

Finance (Program 1–4) and CNB (Program 1–5), see Program 1–10. 

In the first part of the program the particular time series are obtained. However, 

the most important part of the algorithm is the combination of obtained financial 

time series into one matrix. As these time series are of different length20 the 

missing values have to be determined. In Program 1–10 we utilize linear 

interpolation by means of interp1 function. Another approach would be to 

substitute missing values by the previous last known value. Although the second 

approach provides more correct combination of time series, the linear interpolation 

is simpler but sufficient. 

The evolution of indices is depicted in Figure 1–4. In the figure the values of 

indices were normalized so that they all start at the level of one. Before discussing 

the figure, we should note that all the indices are price indices, i.e. the dividend 

payments are not included in the values of the indices. We should also note that 

the examined period is from January 1, 1994 until September 30, 2014. From the 

figure we can see the effect of dot-com bubble21 with a climax on March 10, 2000 

and global financial crisis in 2008. As can be seen, PX index was not hit by the 

20 Due to the different public holidays in US, Czech Republic and Japan, data are missing 

for some days. 
21 Also referred to as the dot-com boom, the internet bubble or the information technology 

bubble. 
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dot-com bubble at all, while S&P 500 and Nikkei 225 were hit seriously. On the 

other hand, both S&P 500 and Nikkei 225 have already managed to recover from 

the drop in 2008, while PX index has not. If we compare the final values of the 

indices, we can see that S&P 500 managed to triple its value, PX index increased 

by half and Nikkei 225 decreased by 20% over previous almost 20 years. 

Program 1–10 Historical dataset of stock market indices 

program_1_1; %import PX index history 

index=(PX.dates>=datenum('1-Jan-1994'))&... 

(PX.dates<=datenum('30-Sep-2014')); 

PX.dates=PX.dates(index);%we want only period 1.1.1994–30.9.2014 

PX.values=PX.values(index);%we want only period 1.1.1994–30.9.2014 

%import S&P 500 index history 

[SP500.dates,~,~,~,SP500.close,~,~]=downloadyahoo('^GSPC',... 

'd',1994,1,1,2014,9,30); 

%import Nikkei 255 index history 

[N225.dates,~,~,~,N225.close,~,~]=downloadyahoo('^N225',... 

'd',1994,1,1,2014,9,30); 

%import USD/CZK FX rate history 

[USD.dates,USD.fxrate]=downloadCNB('USD',1994,1,1,2014,9,30); 

%import JPY/CZK FX rate history 

[JPY.dates,JPY.fxrate]=downloadCNB('JPY',1994,1,1,2014,9,30); 

dates=union(PX.dates,union(union(SP500.dates,USD.dates),... 

union(N225.dates,JPY.dates))); 

prices(:,1)=interp1(PX.dates,PX.values,dates,'linear','extrap'); 

prices(:,2)=interp1(SP500.dates,SP500.close,dates,'linear',... 

'extrap'); 

prices(:,3)=interp1(USD.dates,USD.fxrate,dates,'linear','extrap'); 

prices(:,4)=interp1(N225.dates,N225.close,dates,'linear','extrap'); 

prices(:,5)=interp1(JPY.dates,JPY.fxrate,dates,'linear','extrap'); 

% convert the indices into CZK and normalize the data 

prices=[prices(:,1) prices(:,2).*prices(:,3)... 

prices(:,4).*prices(:,5)]; 

prices_normalized=(prices./repmat(prices(1,:),size(prices,1),1)); 

list={'PX','S&P 500', 'Nikkei 225'}; 

% plot the data 

figure; 

plot(dates, prices_normalized); 

datetick('x'); 

xlabel('Date'); 

ylabel('Index value (relative)'); 

legend(list); 

%% save data 

returns=prices(2:end,:)./prices(1:end-1,:)-1; 

save data_PX_SP500_N225; 
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Figure 1–4 Evolution of indices in time 

1.3.2 Dow Jones Industrial Average dataset 

Another dataset we create consists solely of the stocks incorporated in one of the 

American stock market indices – Dow Jones Industrial Average (henceforth 

DJIA). The components of the index are listed in Appendix B. The dataset we 

want to create should cover the period from January 1, 1991 until September 30, 

2014. Due to the lack of the historical data we do not include into the dataset the 

data of The Goldman Sachs Group, Inc. (Yahoo Finance ticker GS) and Visa Inc. 

(Yahoo Finance ticker V). Thus, the dataset consists of only the remaining 28 

stocks. 

The practical implementation is depicted in Program 1–11. The program cycles 

through the list of remaining DJIA components, DJIA_list, downloading each of 

them by function downloadyahoo (Program 1–4). Due to the fact that all the time 

series are of the same length they can be simply combined into the matrix prices 

without dealing with the missing data. At the end of the program discrete returns 

are calculated and all the data are saved to the file data_DJIA.mat. 

Program 1–11 Historical dataset of the stocks incorporated in DJIA (as of October 6, 2014) 

DJIA_list={'MSFT', 'CSCO', 'INTC', 'PFE', 'GE', 'T', 'JPM', 'KO', 

'VZ', 'XOM', 'MRK', 'DIS', 'JNJ', 'PG', 'CVX', 'HD', 'WMT', 'AXP', 

'NKE', 'DD', 'MCD', 'CAT', 'MMM', 'TRV', 'UNH', 'BA', 'IBM', 

'UTX'}; 

for a=1:length(DJIA_list) 

  tic; 

  [dates,~,~,~,~,~,prices(:,a)]=downloadyahoo(DJIA_list{a},... 

'd',1991,1,1,2014,9,30); 

  fprintf(['Symbol ' DJIA_list{a} ' imported in %5.2f'... 

'seconds.\n'],toc); 

end 

returns=prices(2:end,:)./prices(1:end-1,:)-1; 

clear a; save data_DJIA; 
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1.3.3 Standard & Poor's 500 Dataset 

In the same way as DJIA dataset, we can obtain S&P 500 dataset – the historical 

data of the stocks incorporated in the Standard & Poor's 500 index. The program 

for data acquisition and combination is depicted in Appendix C.  

The program is improved version of the Program 1–11. At the beginning of the 

algorithm we start with the full list of 501 stock symbols and cycle trough them. 

For each symbol we download the data for the period from September 30, 2004 

until September 30, 2014.22 If the historical data are downloaded for the whole 

period (i.e. we obtain 2,518 daily observations) the stock is included in the dataset. 

If there are missing data, the stock is ommited from the dataset. 

By this way, the following 53 stocks (tickers) were omitted from the dataset: 

ABBV, ADT, ALLE, AMP, AVGO, CFN, CBS, CF, CMG, COV, DLPH, DAL, 

DFS, DISCA, DISCK, DG, DPS, EXPE, FB, FSLR, GM, GS, GOOG, ICE, KIM, 

KMI, KRFT, LO, LYB, MNK, MPC, MA, MJN, NAVI, NWSA, NLSN, KORS, 

PM, PSX, QEP, SNI, SE, TEL, TDC, TWC, TRIP, UA, VIAB, V, WU, WIN, 

WYN, XYL, ZTS. The remaining stocks, i.e. 448 stocks, build-up the dataset. 

Finally we obtained the matrix in which we have 2,518 daily price observations 

(rows) of 448 stocks (columns). From the prices we calculate the discrete returns 

and save the data into the file data_SP500.mat. 

22 The length of the period was chosen as the compromise between maximum length and 

quantity of stocks without missing data over the selected period. 






