
Series on Advanced Economic Issues Faculty of Economics, VŠB-TU Ostrava

www.ekf.vsb.cz/saei saei@vsb.cz

http://www.ekf.vsb.cz/cerei
mailto:ekonomicka.revue@vsb.cz

Series on Advanced Economic Issues

Faculty of Economics, VŠB-TU Ostrava

Aleš Kresta

FINANCIAL ENGINEERING IN MATLAB:

SELECTED APPROACHES AND

ALGORITHMS

Ostrava, 2015

Aleš Kresta

Department of Finance

Faculty of Economics

VŠB-Technical University Ostrava

Sokolská 33

701 21 Ostrava, CZ

ales.kresta@vsb.cz

Review

Miloš Kopa, Charles University in Prague

Sergio Ortobelli Lozza, University of Bergamo

The research was supported by the European Social Fund under the Opportunity for young

researchers project (CZ.1.07/2.3.00/30.0016) as well as by GA ČR (Czech Science

Foundation – Grantová Agentura České Republiky) under the project no. 13-18300P.

The text should be cited as follows: Kresta, A. (2015). Financial Engineering in Matlab:

Selected Approaches and Algorithms, SAEI, vol. 33. Ostrava: VSB-TU Ostrava.

© VŠB-TU Ostrava 2015

Printed in KLEINWÄCHTER s.r.o.

Cover design by MD communications, s.r.o.

ISBN 978-80-248-3702-4

Preface

In recent decades we have been witnessing the dynamic evolution in the financial

engineering1, which is a multidisciplinary field involving applied mathematics,

computer science, statistics and economic theory. The attention was mostly given

to the areas of corporate finance, pricing of derivatives and structured products,

financial regulation, portfolio and risk management and algorithmic trading.

The practice of financial engineering has also been subject to a criticism in

recent years. Probably, the most know is Taleb (2008), which is generally

perceived as the criticism of a current state of quantitative financial models.

However, Taleb does not state the pointlessness of the quantitative models. Rather,

he is pointing out that: i) for contemporary models the probabilities of extreme

events, which he calls black swans, are generally underestimated; ii) estimation of

these probabilities from historical observations is nearly impossible; iii) we, as a

mankind, are prone to find rules and causes in what was purely random (he says

that we are fooled by the narration fallacy), for these phenomena see also Taleb

(2013). To conclude, Taleb is pointing out that the contemporary quantitative

models are not panacea and should be taken with moderation. We can, however,

add that imprecise models are better than no models at all. On the other hand, the

advantage of the quantitative models is that they can be statistically tested.2

The book is focused on the essential part of financial engineering, which is

financial time series modelling and its application in portfolio management and

risk management. Contemporary state of the art of financial time series modelling

is connected to the Efficient Market Hypothesis according to which prices fully

reflect all available information and hence are unforecastable, see Samuelson

(1965) and Fama (1965a, 1965b, 1970). A strong form of this hypothesis presumes

asset returns to be even independent and identically distributed, see e.g. Fama

(1970). However, note that works, such as Lo and MacKinlay (2011) and Lo et al.

(2000), provided compelling evidence that markets are not efficient, i.e. price data

do possess statistical properties that noticeably deviate from the models of random

price evolution.

In the book we explain principles and models of financial time series

modelling, as well as provide reader with immediate practical applications of these

principles in programming language. The example codes are written in Matlab

environment (for brief description of the environment and the programming

language see Appendix A). We are aware that there are some books already written

on the topic of financial engineering providing applications in Matlab, see for

1 Sometimes also addressed as a quantitative or mathematical finance.
2 Good example is a technical analysis. If the technical analysis is performed subjectively,

the accuracy can be hardly tested. However, if the technical rules are clearly defined, the

accuracy can be easily back-tested on the historical data. However, even in this case the

results should be taken carefully and one should be aware of possible data-snooping bias.

A well written reference in this field is Aronson (2006).

VI Preface

instance Chan (2008, 2013), Huynh et al. (2008) or Kienitz and Wetterau (2012).

However, in these books the discussed topics and codes are focused rather

specifically. In this book we want to provide the reader with both the knowledge

of selected approaches in financial time series modelling and fully working

programs3, which can be directly utilized without any knowledge about

programming in Matlab. Thus, the book can be utilized by both undergraduate and

postgraduate students in finance and computer science as the learning reference of

Matlab programming language. As the presented models and algorithms are rather

simple, we also include the ideas for further research and development at the ends

of chapters where it is possible. We hope that the book can provide some

interesting ideas for diploma theses elaboration.

The book is structured into five chapters. In order to provide fully working

algorithms we had to start at the beginning with the data acquisition, which is the

content of the first chapter. In the book we utilize freely available data sources

such as Prague Stock Exchange (PSE), Czech National Bank (CNB), Yahoo

Finance and TrueFX website. When we download the particular time series it is

necessary to combine them together, so that we create an matrix in which one

dimension of the matrix represents the particular symbols and second dimension

of the matrix represents time (see subchapter 1.3). For some data sources, mainly

for tick-by-tick data, these data have to be first resampled in order to be easily

manipulated. Thus, we briefly discuss also the data resampling issue (subchapter

1.2).

In the second chapter we describe the approaches and models applicable for

modelling of returns. However, the returns must be computed first. Speaking about

returns, we can distinguish discrete and continuously compounded returns. The

difference is not only in their definition, and thus in computation, but also in the

way they can be aggregated over time and the way the portfolio return can be

computed (see subchapter 2.1.4). The historical returns calculation and estimation

of future returns are described in subchapter 2.1. The returns modelling itself is

described through subchapters 2.2–2.6.

Generally, when modelling financial time series, we have to deal with

empirical evidences.4 Firstly, the empirically observed returns of financial time

series are characterized by fatter tails compared to the Gaussian (normal)

distribution. Thus, it can be concluded, in line with Mandelbrot (1963b), that

Gaussian distribution is not appropriate for modelling of financial returns. We

address this issue by introducing Student distribution (subchapter 2.2.2) and Lévy

family of models (subchapter 2.3). Secondly, empirical volatility of returns is not

constant over time, but is rather clustered. Thus, for the same asset, the periods

with high volatility (high profits/losses) can be seen as well as the periods in which

volatility is low (the profits/losses are close to zero). This issue can be tackled by

volatility modelling. We address this feature in subchapter 2.4. Lastly, we have to

3 The programs presented in this book are freely obtainable upon an e-mail request to the

author at ales.kresta@vsb.cz.
4 See e.g. Cont (2001) for the summary of empirical properties.

Preface VII

deal with the dependency among particular time series. Generally, the returns are

not correlated strongly when they are around zero, however, in the tails the

correlation increases. Appropriate tool for dependency modelling are copula

functions based on Sklar’s theorem, see Sklar (1959, 1973), which allows to

decompose the joint distribution into marginal distributions and copula function.

The distribution of particular time series is then modelled by marginal

distributions, while dependency is tackled only by copula function. The copula

function and dependency modelling are discussed in subchapter 2.5.

In the third chapter we introduce simple mean-variance portfolio optimization

framework as introduced by Markowitz (1952). In this framework the portfolios

are described by only two parameters – the mean and the standard deviation of

future one-period-return probability distribution. Concerning these two

parameters we can distinguish three set of portfolios: feasible, efficient and

optimal. Knowing the particular investor's risk profile we can optimize portfolio

composition and find directly optimal portfolio. However, without this knowledge,

the best we can obtain is only Pareto efficient set of portfolios. The search for

efficient set of portfolios is first illustrated by a rather naive method (subchapter

3.2) consisting of stratification and brute-force method.5 Then, the efficient set of

portfolios is obtained as the solution to the quadratic optimization problem

(subchapter 3.3). At the end of the chapter we define optimal portfolio

optimization problem for the case that we know investor's risk profile.

In the fourth chapter we apply the optimal portfolio optimization problem to

real datasets of American stocks traded at NYSE and Nasdaq (description of

dataset can be found in subchapter 1.3). However, before presenting empirical

results (subchapter 4.3), we first define basic performance measures (subchapter

4.2) such as maximum drawdown and Sharpe and Rachev ratios. Then the

portfolios performances are studied for different risk profiles, portfolio

recalibration periods and historical windows of parameters estimation.

When holding the particular portfolio, the investors are interested in the risk

which is connected to their position. The same holds for financial institutions,

which have to compute the risk arising from the portfolio of financial instruments

they hold. The risk estimation and its backtesting is described in the fifth chapter.

Although there were introduced many risk measures in the literature, the most

discussed measures nowadays are Value at Risk (see subchapter 5.1.1) and

Conditional Value at Risk (see subchapter 5.1.2). Particularly Value at Risk is

nowadays mostly utilized measure of risk – for financial institutions even

obligatory, see Basel II and Solvency II regulations. We can generally distinguish

three groups of methods for risk estimation. They are historical simulation,

analytical solution and Monte Carlo simulation. While historical simulation

5 In computer science, brute-force search is a very general problem-solving technique that

consists of systematically enumerating all possible candidates for the solution and checking

whether particular candidates satisfy the problem's statement.

VIII Preface

(subchapter 5.2.1) is a nonparametric6 method, in the latter two methods we

assume returns to be distributed according to particular parametric probability

distribution. The difference is whether we are able to obtain the analytical formula

of risk quantification (subchapter 5.2.3) or Monte Carlo simulation has to be

applied (subchapter 5.2.4). These methods have their advantages and

disadvantages. Also their accuracy can differ for different portfolios. The accuracy

is evaluated by the so-called backtesting procedure (see subchapter 5.3). At the

end of the chapter we provide the empirical results of particular estimation

methods for dataset consisting of American stocks included in Dow Jones

Industrial Average index. In performed analyses we back-tested the methods in

the period from November 30, 1998 until September 1, 2014, i.e. almost sixteen

years of historical data.

The book was written as the part of the research supported by the European

Social Fund under the Opportunity for young researchers project

(CZ.1.07/2.3.00/30.0016) as well as by GA ČR (Czech Science Foundation –

Grantová Agentura České Republiky) under the project no. 13-18300P. All the

support is greatly acknowledged and appreciated.

6 No specific parametric distribution of returns is assumed. We rather work with the

empirical distribution of returns.

Contents

Preface ... V

Contents .. IX

Denotations, symbols and abbreviations.. XIII

List of Utilized Matlab Built-in Functions .. XVII

Chapter 1 Data Acquisition ... 1

1.1 Imports from Free Sources ... 1

1.1.1 Prague Stock Indices from pse.cz ... 1

1.1.2 Stock Financial Time Series from Yahoo Finance................................ 4

1.1.3 Foreign Exchange Rates from CNB .. 5

1.1.4 Foreign Exchange Rates from TrueFX.com ... 6

1.2 Data Resampling ... 9

1.2.1 Resampling by Time ... 10

1.2.2 Resampling by Price Movements ... 10

1.3 Combination of Time Series ... 12

1.3.1 Small Indices Dataset .. 12

1.3.2 Dow Jones Industrial Average dataset .. 14

1.3.3 S&P 500 Dataset ... 15

Chapter 2 Returns – Calculation and Modelling ... 17

2.1 Returns Calculation and Estimation .. 17

2.1.1 Individual Assets Returns ... 17

2.1.2 Portfolio Returns ... 18

2.1.3 Returns Calculation for Different Periods .. 19

2.1.4 Aggregation of Returns Across Time and Across Assets 20

2.1.5 Individual Assets Returns Estimation ... 20

2.1.6 Portfolio Returns Estimation ... 21

2.2 Marginal Distributions .. 22

2.2.1 Gaussian Distribution ... 23

2.2.2 Student Distribution .. 24

X Contents

2.3 Lévy Models ... 26

2.3.1 Variance Gamma Distribution .. 27

2.3.2 Normal Inverse Gaussian Distribution .. 28

2.3.3 Comparison of Gaussian, Student and NIG Distributions 29

2.4 GARCH Models ... 31

2.5 Dependency Modelling ... 35

2.5.1 Elliptical Copula Functions... 36

2.5.2 Archimedean Copula Functions .. 38

2.5.3 Copula Parameters Estimations .. 40

2.5.4 Utilization of Copula Functions in Matlab ... 40

2.5.5 Combinations of Marginals and Copula Functions 40

2.6 Joint GARCH-Copula Model ... 41

2.7 Discussion and Further Research Ideas .. 43

Chapter 3 Portfolio Optimization .. 47

3.1 Mean-Variance Framework .. 47

3.2 Generation of Feasible Set and Naive Search for Efficient Set 48

3.3 Efficient Set as the Solution to Minimization Problem 54

3.3.1 Optimal Portfolio .. 56

Chapter 4 Backtesting of Portfolio Optimization .. 61

4.1 Backtesting framework ... 61

4.2 Performance Measures .. 63

4.2.1 Maximum Drawdown ... 64

4.2.2 Sharpe Ratio .. 64

4.2.3 Rachev Ratio ... 65

4.3 Empirical Results of Portfolio Optimization Backtesting 66

4.3.1 Different Values of Parameter k ... 66

4.3.2 Different Values of Historical Window .. 74

4.3.3 Different Values of Portfolio Recalibration Period............................. 76

4.4 Discussion and Further Research Ideas .. 78

Contents XI

Chapter 5 Portfolio Risk Estimation and Its Backtesting 81

5.1 Risk Measures ... 81

5.1.1 Value at Risk ... 82

5.1.2 Conditional Value at Risk ... 83

5.2 Methods for Risk Estimation .. 84

5.2.1 Historical Simulation .. 84

5.2.2 Filtered Historical Simulation ... 85

5.2.3 Analytical Solution ... 87

5.2.4 Monte Carlo Simulation .. 89

5.3 Backtesting Procedure and Statistical Inference 90

5.3.1 Kupiec's Unconditional Coverage Test ... 93

5.3.2 Christoffersen's Conditional Coverage Test 94

5.4 Empirical Results of Statistical Testing .. 96

5.4.1 Historical Simulation .. 98

5.4.2 Filtered Historical Simulation ... 100

5.4.3 Joint Gaussian Distribution ... 103

5.4.4 NIG-Copula Model ... 104

5.5 Discussion and Further Research Ideas .. 110

Conclusion .. 113

Appendix .. 117

References .. 143

List of Tables .. 151

List of Figures ... 153

List of Programs ... 155

Index ... 157

Denotations, symbols and

abbreviations

C copula function;
GaC express Gaussian copula function, ,

StC  express

Student copula function and  1
,

ArchC
 

 express Archimedean copula

function

CVaR Conditional Value at Risk at given probability level 

e the standardized residuals in filtered historical simulation method

 E R expected return, i.e. the mean of the probability distribution of returns

f probability density function; tf for Student probability distribution,

Nf for Gaussian probability distribution

F cumulative distribution function of a random variable; tF for Student

probability distribution,  for Gaussian probability distribution

k parameter stating the level of risk aversion of the investor

 l t subordinator process in Lévy models

L likelihood function

LR specified likelihood ratio, e.g.
KupiecLR for likelihood ratio of Kupiec's

test

m the length of time series left for the parameters estimation, i.e. the

length of data not utilized for backtesting procedure as they are

utilized for initial parameters estimation

n number of backtesting observations; 1n refers to quantity of

exceptions (VaR violations), 0n refers to quantity of observations in

which exception did not happen

iP price of the i-th asset; the price of the i-th asset in specified time t is

addressed as ,i tP

PP portfolio value at time; the value of the portfolio in specified time t is

addressed as ,P tP

Q covariance matrix

r continuously compound return; the portfolio returns are referred as Pr

and assets returns as ir

R discrete return; the portfolio returns are referred as PR , assets returns

as iR , risk-free rate as RFR and returns of a benchmark as BR

XIV Denotations, symbols and abbreviations

t current time (or alternatively some specified time)

T final time of the interval

u random returns normalized by cumulative distribution function

v quantity of particular asset in portfolio

VaR Value at Risk at given probability level 

w relative amount of wealth invested in particular asset when referred

ex-post

W wealth and also the value of the portfolio; wealth in particular time is

addressed either as  W t or tW

x relative amount of the wealth invested in particular asset when

referred ex-ante

,X Y random variables

 probability level of VaR forecast; 1  express the confidence level

of VaR, i.e. the probability with which the loss will not exceed the

estimated VaR

 gamma function

 discrete time step

 degrees of freedom in Student distribution

 probabilities of exceptions occurring;
obs observed probability of

exceptions occurring,
ex expected probability of exceptions

occurring,
01 conditional probability of exceptions occurring

 correlation coefficient (,X Y states the correlation coefficient of

random variables X and Y); alternatively risk measure

 standard deviation

2 variance of random variable

,X Y covariance between random variables X and Y

 some specified time

 generator function utilized in the definition of Archimedean copula

functions; alternatively characteristic function of Lévy models

distributions

 cumulative distribution function of normal distribution;

s refer to cumulative distribution function of standard normal

distribution

Denotations, symbols and abbreviations XV

AR(O)-GARCH(P,Q) autoregressive process of order O with innovations

modelled by GARCH process of order P, Q

 ,N   normal distribution with mean  and standard deviation

 ;  0,1N is standard normal distribution, i.e. normal

distribution with zero mean and unit variance

 , , ,NIG     normal inverse Gaussian distribution defined by

parameters  ,  ,  and 

 , , ,NIG     alternative definition of Normal inverse Gaussian

distribution as a subordinated Lévy model with

parameters  ,  , v and 

 , , ,VG     variance-gamma probability distribution defined as a

subordinated Lévy model with parameters  ,  , v and



 Pr x probability that x happens

cdf cumulative distribution function

inf infinity

pdf probability density function

AIC Akaike information criterion

AR autoregressive model

BIC Bayesian information criterion

CML canonical maximum likelihood

CNB Czech National Bank

CVaR Conditional Value at Risk

CZK Czech crown currency

DD drawdown

DJIA Dow Jones industrial average price index

EMLM exact maximum likelihood method

EUR euro currency

FHS filtered historical simulation

GARCH generalized autoregressive conditional

heteroskedasticity model

HS historical simulation method

IFM inference function for margins

K-test Kupiec's test

XVI Denotations, symbols and abbreviations

LR likelihood ratio

MC simulation Monte Carlo simulation

MDD maximum drawdown

NYSE New York stock exchange

OHLC open, high, low, close values

PSE Prague stock exchange

PX Prague stock price index

PX-GLOB Prague stock broad-based price index

PX-TR Prague stock total return index

RR Rachev ratio

S&P 500 Standard & Poor's 500 price index

SL stop loss

SR Sharpe ratio

TP take profit

URL uniform resource locator

USD US dollar currency

VaR Value at Risk

List of Utilized Matlab Built-in

Functions

aicbic returns the values of Akaike information criteria (AIC) and Bayesian

information criteria (BIC)

area produces a 2-D stacked area plot suitable for showing the

contributions of various components to a whole

axis controls axis scaling and appearance

binocdf returns the value of binomial cumulative distribution function

binopdf returns the value of binomial probability density function

break terminates the execution of while or for loops

cdf returns the value of cumulative distribution function of the specified

probability distribution

ceil rounds the input toward plus infinity

clc clears the Command Window (previously submitted commands are

still stored in Command History panel)

clear clears (the specified) variables and functions from the memory

clear all clears all variables and functions from the memory

continue skips the execution of actual for or while loop's iteration and passes

the control to the next iteration

contour plots the contour graph

copulacdf returns the value of cumulative distribution function for the specified

copula function

copulafit fits the parameters of specified copula function to data

copulapdf returns the value of probability density function for the specified

copula function

copularnd generates random numbers from the specified copula function

corr returns correlation matrix of the specified data

cov returns the covariance matrix of the specified data

cumprod returns cumulative products of the input elements, works both with

vectors and matrices

cumsum returns cumulative sums of the input elements, works both with

vectors and matrices

dateaxis formats specified axis labels to the specified date/time format,

interchangeable with datetick

datenum converts date vector or char array into serial date number

datestr converts serial date number to the date string of specified format

XVIII List of Utilized Matlab Built-in Functions

datetick formats specified axis labels to the specified date/time format,

interchangeable with dateaxis

diff returns the differences between subsequent elements in the specified

vector or matrix

dir returns the list of files in the specified directory

eps returns the smallest distinguishable change in floating point number

exp returns the value of exponential function

eye returns the identity matrix of the specified size

fclose closes the specified file, see also fopen

figure creates a new figure window

fix rounds the input toward zero

flipud flips the matrix or vector upside down

floor rounds the input toward minus infinity

fmincon finds the minimum of the function under the linear and nonlinear

constraints

fopen opens the specified file for read/write access, see also fclose

fprintf writes specified formatted data as the output to the Command

Window or a text file

garchfit estimates the parameters of specified ARMAX-GARCH model based

on the input data

garchpred forecasts specified ARMAX-GARCH model responses

garchset sets the structure of ARMAX-GARCH models

garchsim simulates ARMAX-GARCH model responses

hold on holds the current plot and axes properties so that subsequent graphs

are plotted over the existing graph

chi2cdf returns value of chi-square cumulative distribution function

icdf returns the value of inverse cumulative distribution function for a

specified probability distribution

importdata loads the data from the specified file into the workspace

inf returns the IEEE arithmetic representation for positive infinity, which

is produced by operations like dividing by zero, e.g. 1.0/0.0, or from

overflow, e.g. exp(1000)

interp1 returns the 1-D interpolated data

kurtosis returns the sample kurtosis of the input values

legend displays specified legend in the current graph

length returns the length of a vector or the maximum size of an array,

length(X) is equivalent to the command max(size(X))

log returns the value of natural logarithm

log10 returns the value of the decimal logarithm

List of Utilized Matlab Built-in Functions XIX

max returns the maximum value of the vector or maximum values in the

arrays along the specified dimension

mean returns the average (mean) value of the vector or average values in the

arrays along the specified dimension

median returns the median value of the vector or median values in the arrays

along the specified dimension

min returns the smallest value of the vector or smallest values in the arrays

along the specified dimension

mle returns maximum likelihood estimates of parameters of the specified

probability distribution

nan returns the array of the specified size containing values of NaN – the

IEEE arithmetic representation for Not-a-Number, which is obtained

as a result of mathematically undefined operations like 0.0/0.0 and

inf–inf

normfit estimates parameters and confidence intervals for normal distribution

normrnd returns the array of the specified size containing pseudorandom

numbers drawn from the normal (Gaussian) distribution with

specified mean and standard deviation, see also randn

nthroot returns the specified root of the input, nthroot(a,b) provides the same

result as power(a,1/b)

num2str converts number into string

ones returns the array of specified size containing values of one

optimset creates or changes the structure of optimization parameters

portopt computes the mean-variance efficient frontier

pdf returns the value of probability density function of the specified

probability distribution

plot plots vector or matrix data (vertical axis) versus a vector data

(horizontal axis) preserving the linear scales of the axes

power returns specified input real number powered by another input real

number

prod returns the products of the elements in the array along the specified

dimension

rand returns the matrix of specified size containing pseudorandom

numbers drawn from the uniform distribution on the open interval

(0,1)

randn returns the matrix of specified size containing pseudorandom

numbers drawn from the standard normal (Gaussian) distribution, see

also normrnd

repmat creates a larger array, which consists of specified quantity of input

array copies

reshape reshapes the input array in the specified manner

XX List of Utilized Matlab Built-in Functions

round rounds the input toward nearest integer

save saves all the variables from the current workspace to the specified

Matlab formatted binary file

semilogx is the same as plot function, except for that a logarithmic scale is used

for the horizontal axis

semilogy is the same as plot function, except for that a logarithmic scale is used

for the vertical axis

size returns array size – a vector of dimension lengths

skewness returns the sample skewness of the input values

sort sorts the input array along the first non-singleton dimension in

ascending order

sortrows sorts the rows of the matrix as a groups in ascending order

sqrt returns the value of the square root of the input variable

squeeze removes all the singleton dimensions (dimensions of the size one)

from the array, matrices are unaffected by the function

std returns the values of standard deviations for each column of the input

matrix

subplot breaks the figure window into the specified quantity of tiles, plot the

axes in each tile and selects the specified tile for the current plot

sum returns the sums of the elements in the array along the specified

dimension

surf plots 3-D coloured surface graph

textscan reads formatted data from the specified text file or string

tic starts a stopwatch timer, see function toc

toc reads the value of stopwatch timer, see function tic

union returns the combined values of the two vectors (input variables)

without repetitions

upper converts string to uppercase

urlwrite downloads the URL content and saves it as a file

xlabel writes the label to the x-axis

ylabel writes the label to the y-axis

zeros returns the array of specified size containing values of zero

1

Data Acquisition

For any analysis the first inevitable step is the data acquisition. In this chapter we

explain from where and how to download the data. We utilize free sources of data.

As the obtained data are usually isolated time series it is necessary to combine

them together. Sometimes it can be an easy task, as there are no missing data and

downloaded time series can be directly put together into a matrix (see subchapters

1.3.2 and 1.3.3), however, in most cases there are missing data, which have to be

determined. In the example of small indices dataset we utilize the linear

interpolation method (subchapter 1.3.1).

The datasets obtained in this chapter are used in this book for portfolio

optimization backtesting (chapter 4) and risk estimation backtesting

(chapter 5).

1.1 Imports from Free Sources

There are many available free data sources on the internet. In this book we utilize

following freely available data sources: Prague Stock Exchange website

(subchapter 1.1.1), Yaohoo Finance website (subchapter 1.1.2), Czech National

Bank website (subchapter 1.1.3) and TrueFX website (subchapter 1.1.4). Our

intention is not to provide the complete list of the available data sources, but rather

to give the examples of some easily utilized ones.

1.1.1 Prague Stock Indices from pse.cz

The Prague Stock Exchange (henceforth PSE) calculates and publishes three

national indices in order to provide investors and the wider public with concise

information on the performance of the Czech regulated market. They are:

 PX – a tradable price index made up of the most actively traded blue-

chips of the Prague Stock Exchange;

 PX-TR – a total return index with the same base as PX index;

 PX-GLOB – a broad-based price index comprising stocks traded on a

regulated stock market of the Prague Stock Exchange.

Further we focus on PX and PX-TR indices as they are composed from the

most actively traded blue-chips for which the liquidity is not an issue. Both PX

2 Chapter 1

2015 A. Kresta

and PX-TR indices are the official indices of the Prague Stock Exchange. They

are a capitalization-weighted price and total return7 indices made up of the most

traded blue chips at the Prague Stock Exchange.8 The indices are calculated in

CZK and disseminated in real-time by the Prague Stock Exchange. They are

designed as a tradable indices to be used as an underlying asset for structured

products and for standardized derivatives.9 The base of the indices is mutual.

Although PX-TR index was launched on March 24, 2014, its values were

calculated back to March 20, 2006. At that date it took the same value as PX index.

The history of the indices can be downloaded from the following addresses:

 http://ftp.pse.cz/Info.bas/Cz/PX.csv,

 http://ftp.pse.cz/Info.bas/Cz/PX-TR.csv,

 http://ftp.pse.cz/Info.bas/Cz/PX-GLOB.csv,

and the format of the files possess following characteristics:

 file is in date, value, change format,

 the comma is used as the delimiter,

 dot is used as the decimal sign,

 date is in format dd.mm.yyyy, where dd are days, mm are the month

numbers and yyyy stands for years.

Due to these characteristics, it is easy to import the data as shown by Program 1–

1, which also downloads the csv file from the internet and saves it to the current

folder.

Program 1–1 Import of PX index history values

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX.csv','data_PX.csv');

import=importdata('data_PX.csv'); %import the file

PX.values=import.data(:,1); %obtain the values of PX index

for a=1:size(import.textdata,1)

 PX.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy');

end;

clear import;

save data_PX;

%%plot the imported data

figure;

plot(PX.dates, PX.values);

datetick('x');

xlabel('Date');

ylabel('PX Value');

Obviously also other indices can be downloaded and imported in the same way,

see Program 1–2 for PX-TR index history download and Program 1–3 for

PX-GLOBAL index history download.

7 Due to the consideration of dividend payments the index reflects the total return of the

underlying portfolio.
8 The actual base of PX index and PX-TR index can be found at http://ftp.pse.cz/

Info.bas/Cz/PX.pdf and http://ftp.pse.cz/Info.bas/Cz/PX-TR.pdf.
9 http://en.indices.cc/cooperations/pse/px-tr/

Data Acquisition 3

Financial Engineering in Matlab: Selected Approaches and Algorithms

Program 1–2 Import of PX-TR index history values

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX-TR.csv',...

'data_PX-TR.csv');

import=importdata('data_PX-TR.csv'); %import the file

PXTR.values=import.data(:,1); %obtain the values of PX-TR index

for a=1:size(import.textdata,1)

 PXTR.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy');

end;

clear import;

save data_PX-TR;

%%plot the imported data

figure;

plot(PXTR.dates, PXTR.values);

datetick('x');

xlabel('Date');

ylabel('PX-TR Value');

When we have downloaded the data, it would be interesting to compare the

evolution of the both PX and PX-TR indices. The comparison is made in Figure

1–1. The graph starts on March 20, 2006 when both indices have the same value

of 1,554.6 and ends on September 30, 2014 when the value of PX index was 991.4

and PX-TR 1,441.01. We see that both indices decreased over the examined period

with the huge drop in the second half of 2008 (financial crisis). While PX index

hasn't recovered yet, PX-TR index values has been steadily increasing to its

starting value. The difference in the indices' values is caused by the inclusion of

dividend payments in PX-TR index.10

Program 1–3 Import of PX-GLOBAL index history values

urlwrite('http://ftp.pse.cz/Info.bas/Cz/PX-GLOB.csv',...

'data_PX-GLOB.csv');

import=importdata('data_PX-GLOB.csv'); %import the file

PXGLOB.values=import.data(:,1); %obtain the values of PX-GLOBAL

for a=1:size(import.textdata,1)

 PXGLOB.dates(a)=datenum((import.textdata{a}),'dd.mm.yyyy');

end;

clear import;

save data_PX-GLOB;

%%plot the imported data

figure;

plot(PXGLOB.dates, PXGLOB.values);

datetick('x');

xlabel('Date');

ylabel('PX-GLOBAL Value');

10 Many blue-chip stocks traded at Prague Stock Market pays high dividends. Note that

dividend pay-out ratios was high for ČEZ, O2 C.R., PHILIP MORRIS ČR and others.

4 Chapter 1

2015 A. Kresta

Figure 1–1 Evolution of Prague stock indices

1.1.2 Stock Financial Time Series from Yahoo Finance

In order to obtain the financial time series of stocks or market indices, also the

finance.yahoo.com web site can be utilized. Quotes of many stocks can be

obtained through this website and the available stocks are not limited to US

markets but also European and Asian stock data can be obtained there.

The advantage of this source can be found in the fact that finance.yahoo.com

provides data, which are adjusted for splits and dividends paid.11 The disadvantage

is that the YAHOO provides data only for stocks which are currently being traded,

i.e. it is impossible to obtain data for the companies which went bankruptcy or left

the market from any reason. This makes data, if not threated correctly, prone to

the so-called survivorship bias – for further explanation see Chan (2008).

Data in Yahoo Finance data source can be accessed through *.csv files as in

the case of Prague stock market indices. It is available at the following URL:

http://ichart.finance.yahoo.com/table.csv followed by the specification of symbol,

periodicity of the data and period we want to download. This interface is utilized

in Program 1–4 which downloads the data for specified symbol in specified

periodicity over the periods specified by the rest of the input parameters.12

11 When looking at the historical prices refer to the last column Adj Close.
12 Another code for downloading YAHOO Finance data can be found for instance at:

http://luminouslogic.com/matlab_stock_scripts/get_hist_stock_data.m. The mentioned

algorithm does not save the downloaded data to local folder as it applies other Matlab

functions for data download.

Data Acquisition 5

Financial Engineering in Matlab: Selected Approaches and Algorithms

Program 1–4 Function downloadyahoo.m

function [date,open,high,low,close,vol,adjclose]=...

downloadyahoo(symbol, periodicity, from_year, from_month,...

from_day, to_year, to_month, to_day)

% download the data from finance.yahoo.com

% period can be 'd' for daily data, 'w' for weekly data, 'm' for

% monthly data

% Create URL string and download csv file

url_string = ['http://ichart.finance.yahoo.com/table.csv?s='...

upper(symbol) '&a=' num2str(from_month-1) '&b='...

num2str(from_day) '&c=' num2str(from_year) '&d='...

num2str(to_month-1) '&e=', num2str(to_day) '&f...

num2str(to_year) '&g=' periodicity '&ignore=.csv'];

urlwrite(url_string,['data_' upper(symbol) '.csv']);

import=importdata(['data_' upper(symbol) '.csv']);

delete(['data_' upper(symbol) '.csv']);

% Reverse to normal chronological order

open = flipud(import.data(:,1));

high = flipud(import.data(:,2));

low = flipud(import.data(:,3));

close = flipud(import.data(:,4));

vol = flipud(import.data(:,5));

adjclose = flipud(import.data(:,6));

for a=length(open):-1:1

 date(length(open)-a+1)=datenum((import.textdata{a+1}),...

'yyyy-mm-dd');

end;

end

This function returns OHLC13 time series as well as the time series of volumes

(vol), adjusted close (adjclose) and corresponding dates. Reader should note that

while general convention is to sort time series from the oldest to the most recent

record, the Yahoo provides the data in opposite order, thus data have to be flipped

(function flipud).

1.1.3 Foreign Exchange Rates from CNB

Another source of the files which can be directly imported into Matlab is the

website of the Czech National Bank (CNB).14 This time series consist of foreign

exchange rates (FX rates) of foreign currencies to Czech crown with the daily

periodicity. The data can be viewed in a web browser or downloaded in two

formats: Excel spreadsheet or text file. We can utilize text file option and create a

function which will download and import the data, see Program 1–5.

13 Open-high-low-close prices.
14 http://www.cnb.cz/en/financial_markets/foreign_exchange_market/exchange_rate_fixin

g/selected_form.jsp

6 Chapter 1

2015 A. Kresta

Program 1–5 Function downloadCNB.m

function [date,FXrate]=downloadCNB(symbol,from_year,...

from_month,from_day,to_year,to_month,to_day)

% Create URL string and download csv file

url_string=['http://www.cnb.cz/miranda2/m2/en/financial' ...

'_markets/foreign_exchange_market/exchange_rate_fixing/' ...

'selected.txt?code=' upper(symbol) '&from=' num2str(from_day)...

'.' num2str(from_month) '.' num2str(from_year) '&to='...

num2str(to_day) '.', num2str(to_month) '.' num2str(to_year)];

% Import csv file and obtain data

urlwrite(url_string,['data_' upper(symbol) 'CZK.csv']);

import=importdata(['data_' upper(symbol) 'CZK.csv']);

delete(['data_' upper(symbol) 'CZK.csv']);

FXrate=import.data;

for a=length(FXrate):-1:1

 date(a)=datenum((import.textdata{a+2}),'dd.mmm yyyy');

end;

end

1.1.4 Foreign Exchange Rates from TrueFX.com

In this book we utilize only daily data obtained from Yahoo Finance and CNB

website. Daily periodicity is enough for most of the analyses, however, it can be

sometimes useful to obtain high frequency data. Even high frequency data for the

most traded FX pairs can be obtained freely from the internet, namely two

following sources: TrueFX15 and GAIN Capital.16 Data from both sources have to

be downloaded manually. In the book we focus on TrueFX data source as it

provides higher-speed download.

As we mentioned in the previous text, the data have to be downloaded

manually. It is due to the obligatory registration into the website. After the free

registration we can download the data into the local folder. In Figure 1–2 we show

the example of the data downloaded into the folder c:\import. The reader should

note that due to high frequency of the data the size of files is around 100 MB each.

We observed that Matlab (run on standard personal computer) can work with at

maximum eight of these files at the same time. Thus for the proper analysis an

access to a supercomputing facility is needed.

15 http://truefx.com/?page=downloads
16 http://ratedata.gaincapital.com

Data Acquisition 7

Financial Engineering in Matlab: Selected Approaches and Algorithms

Figure 1–2 Example of the directory containing data downloaded from TrueFX website

The format of each file possess following characteristics:

 file is in name, date-time, bid, ask format,

 comma is used as the delimiter,

 dot is used as the decimal sign,

 date-time column is in format rrrrmmdd HH:MM:SS.FFF, where dd are

days, mm are the month numbers, yyyy stands for years, HH are the hours

value (in 24-hour format), MM minutes, SS second and FFF stands for

milliseconds.

Knowing the structure of the files we can employ function importfxdata shown in

Program 1–6 for data import.

8 Chapter 1

2015 A. Kresta

Program 1–6 Function importfxdata.m

function [data] = importfxdata(filename)

%imports data from file specified as an imput

if exist(filename,'file')

 fid = fopen(filename);

 import=textscan(fid,'%s %s %f %f','delimiter', ',');

 data.name=import{1}{1};

 data.time=datenum(import{2},'yyyymmdd HH:MM:SS.FFF');

 data.bid=import{3};

 data.ask=import{4};

 fclose(fid);

else

 data=NaN;

end

end

However, as we have seen in Figure 1–2 the financial time series are split into

months, i.e. one file contain one month of data. However, we generally want to

work with the data history as long as possible to obtain.17 In order to combine data

from more than one file and import all the data files in one directory, the

importfxdirectory function (see Program 1–7) can be applied. The input of the

function is string variable specifying the directory in which the files are saved.

Note that requirement of the function is that no other files (than those containing

data and having specific format of TrueFX data source) can be saved in the

specified directory. The function works in a simple way: first it obtains the list of

files in the specified directory; then goes through the list and imports particular

files applying function importfxdata (see Program 1–6).

Program 1–7 Function importfxdirectory.m

function [data] = importfxdirectory(directoryname)

% imports the whole directory

list=dir([directoryname '*.csv']);

for a=1:length(list)

 lists{a}=[directoryname '\' list(a).name];

end

lists=sortrows(lists');

for a=1:length(lists)

 if a==1

 data=importdata(lists{1});

 else

 dataimported=importdata(lists{a});

 data.time=[data.time; dataimported.time];

 data.ask=[data.ask; dataimported.ask];

 data.bid=[data.bid; dataimported.bid];

 end;

end;

end

17 This is generally true, however, when working on personal computer we also have to take

into consideration computational and memory requirements.

Data Acquisition 9

Financial Engineering in Matlab: Selected Approaches and Algorithms

Figure 1–3 Price evolution and different types of resampling of EUR/USD FX pair

1.2 Data Resampling

While tick-by-tick data provide the most precise information about the evolution

of the time series, they are also of huge size to store. Usually not all the information

is needed and thus they can be compressed. The mostly utilized and well-known

method is a time based resampling. Under this approach we take the values of the

prices/values in equidistant time moments. However, we can do a price based

resampling and instead of taking the fixed period, we fix the price changes

between two subsequent points, i.e. the price can go either up or down by a given

increment (threshold), see Figure 1–3.

In order to express the resampling mathematically, assume a continuous path

 
0

,
T

t t
t X


, which we want to approximate with a finite number of points ,

ii tt X .

Then, by means of time based resampling we obtain  
0

,
T

i i
i X 

 
  and by means

of price based resampling we obtain  ,
ii X , where

 1 1inf : tresholdi it X X        .

As can be seen from the Figure 1–3 in both resampling methods some

information is lost. In order not to discard important information in time based

resampling, we usually save not only the prices at the equidistant time points, but

also minimum and maximum prices between two subsequent points (in the period

between them). By this way we obtain open/high/low/close (OHLC) prices. The

typical period lengths are 1, 5 and 15 minutes, 1, 4 and 8 hours, a day, a week or

a month.

1,3126

1,31265

1,3127

1,31275

1,3128

1,31285

1,3129

1,31295

1,313

1,31305

1.9.14 0:19 1.9.14 0:22 1.9.14 0:25 1.9.14 0:28

price evolution (tick-by-tick)

resample by time

resample by price movements

10 Chapter 1

2015 A. Kresta

1.2.1 Time Based Resampling

If we want to reduce the amount of data stored, we usually resample the data in

time. This is practical reasoning as we are later usually concerned with the

question what the price was at some particular moment of time. Then we look-up

the price at the closest sampled time point. In Program 1–8 we included the

function resamplebytime which can be applied to resample the tick-by-tick data

obtained from TrueFX data source.

Program 1–8 Function resamplebytime.m

function [open,high,low,close]=resamplebytime(time,data,...

timeresampled)

% resamples given time series by time

open =zeros(1,length(timeresampled)-1);

high =zeros(1,length(timeresampled)-1);

low =zeros(1,length(timeresampled)-1);

close=zeros(1,length(timeresampled)-1);

counter=1;

while (time(counter)<timeresampled(1))

 counter=counter+1;

end

for a=2:length(timeresampled)

 open(a-1)=data(counter);

 low(a-1)=open(a-1);

 high(a-1)=open(a-1);

 while (time(counter)<timeresampled(a))

 low(a-1) =min(low(a-1) ,data(counter));

high(a-1)=max(high(a-1),data(counter));

if (counter<length(time))

counter=counter+1;

else

break;

end;

 end;

 close(a-1)=data(counter);

end;

end

1.2.2 Resampling by Price Movements

However, for some applications it can be useful to undertake the different type of

resampling. Assume for instance automated trading system, which trades (buys

the asset) with predefined take profit18 (henceforth TP) and stop loss19 (henceforth

SL). If the difference between TP and SL is small, for some periods (in time based

resampling) the following situation can happen: the highest price is higher than TP

18 The price level at which the trade is closed with the predefined profit. In the case of long

trade position the take profit level is equal to the buy price plus minimum (predefined)

profit.
19 The price level at which the trade is closed in order to avoid big losses. In the case of

long trade position the stop loss is equal to the buy price minus the maximum loss.

Data Acquisition 11

Financial Engineering in Matlab: Selected Approaches and Algorithms

and lowest price is lower than SL. If we are in this period in the long position, we

cannot know what happened first – whether the price went up and we closed the

profitable trade or the price went down and the trade was closed with the loss. This

loss of information can be important when we are backtesting the automated

trading system with the small spread between take profit and stop loss.

In such case, the price based resampling would be more efficient. The price

increment (threshold) should be chosen in order to be equal to the predefined value

of minimum profit or maximum loss (or better to its fraction such as one third

etc.). In Program 1–9 we included the function resamplebyprice which can be

applied to resample the tick-by-tick data obtained from TrueFX data source (see

subchapter 1.1.4).

Program 1–9 Function resamplebyprice.m

function [timesampled,datasampled]=resamplebyprice(time,data,...

starttime,tresholdup,tresholddown)

% resamples given time series by the price movements

counterdata=0; %counter for timesampled and datasampled time series

timesampled=zeros(length(time),1); %pre-alocation of variable

datasampled=zeros(length(data),1); %pre-alocation of variable

for counter=1:length(time)

 if (time(counter)<starttime) %exclude the part of time series

continue;

 end

 %first observation (dependent on starttime)

 if (counterdata==0)

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

 end;

 %if the increase is greater than treshold then add new

 if (data(counter)-datasampled(counterdata)>tresholdup)

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

 end;

 %if the decrease is greater than treshold then add new

 if (data(counter)-datasampled(counterdata)<-tresholddown)

counterdata=counterdata+1;

timesampled(counterdata)=time(counter);

datasampled(counterdata)=data(counter);

continue;

 end;

end;

timesampled=timesampled(1:counterdata);

datasampled=datasampled(1:counterdata);

end

12 Chapter 1

2015 A. Kresta

1.3 Combination of Time Series

In the previous subchapter we discussed the data import possibilities from various

freely available sources. After running some of the import functions we obtain the

one-dimensional data time series. However, for the further analysis it is necessary

to combine these data-series into a matrix so that the particular rows represent the

days and the columns represent particular assets.

Further we prepare three different datasets (i.e. matrices):

 a small indices dataset of three stock market indices (PX index, American

Standard & Poor's 500 and Japanese Nikkei 225) denominated in CZK,

 DJIA dataset of the stocks incorporated in Dow Jones Industrial Average

index, prices are denominated in USD,

 S&P 500 dataset of the stocks incorporated in Standard & Poor's 500

index, prices are denominated in USD.

As we combine different sources in the small indices dataset, the combination

procedure is the most complex one. On the other hand, for DJIA and S&P 500

datasets only Yahoo Finance data source is utilized, so the combination of the data

series is easier.

1.3.1 Small Indices Dataset

In the small indices dataset we want to combine the indices of US stock market,

Prague stock market and Japanese stock market. As each index is denominated in

different currency, we need to recalculate their values (i.e. the prices) to be in

CZK. Thus we have to combine various data sources: PSE (Program 1–1), Yahoo

Finance (Program 1–4) and CNB (Program 1–5), see Program 1–10.

In the first part of the program the particular time series are obtained. However,

the most important part of the algorithm is the combination of obtained financial

time series into one matrix. As these time series are of different length20 the

missing values have to be determined. In Program 1–10 we utilize linear

interpolation by means of interp1 function. Another approach would be to

substitute missing values by the previous last known value. Although the second

approach provides more correct combination of time series, the linear interpolation

is simpler but sufficient.

The evolution of indices is depicted in Figure 1–4. In the figure the values of

indices were normalized so that they all start at the level of one. Before discussing

the figure, we should note that all the indices are price indices, i.e. the dividend

payments are not included in the values of the indices. We should also note that

the examined period is from January 1, 1994 until September 30, 2014. From the

figure we can see the effect of dot-com bubble21 with a climax on March 10, 2000

and global financial crisis in 2008. As can be seen, PX index was not hit by the

20 Due to the different public holidays in US, Czech Republic and Japan, data are missing

for some days.
21 Also referred to as the dot-com boom, the internet bubble or the information technology

bubble.

Data Acquisition 13

Financial Engineering in Matlab: Selected Approaches and Algorithms

dot-com bubble at all, while S&P 500 and Nikkei 225 were hit seriously. On the

other hand, both S&P 500 and Nikkei 225 have already managed to recover from

the drop in 2008, while PX index has not. If we compare the final values of the

indices, we can see that S&P 500 managed to triple its value, PX index increased

by half and Nikkei 225 decreased by 20% over previous almost 20 years.

Program 1–10 Historical dataset of stock market indices

program_1_1; %import PX index history

index=(PX.dates>=datenum('1-Jan-1994'))&...

(PX.dates<=datenum('30-Sep-2014'));

PX.dates=PX.dates(index);%we want only period 1.1.1994–30.9.2014

PX.values=PX.values(index);%we want only period 1.1.1994–30.9.2014

%import S&P 500 index history

[SP500.dates,~,~,~,SP500.close,~,~]=downloadyahoo('^GSPC',...

'd',1994,1,1,2014,9,30);

%import Nikkei 255 index history

[N225.dates,~,~,~,N225.close,~,~]=downloadyahoo('^N225',...

'd',1994,1,1,2014,9,30);

%import USD/CZK FX rate history

[USD.dates,USD.fxrate]=downloadCNB('USD',1994,1,1,2014,9,30);

%import JPY/CZK FX rate history

[JPY.dates,JPY.fxrate]=downloadCNB('JPY',1994,1,1,2014,9,30);

dates=union(PX.dates,union(union(SP500.dates,USD.dates),...

union(N225.dates,JPY.dates)));

prices(:,1)=interp1(PX.dates,PX.values,dates,'linear','extrap');

prices(:,2)=interp1(SP500.dates,SP500.close,dates,'linear',...

'extrap');

prices(:,3)=interp1(USD.dates,USD.fxrate,dates,'linear','extrap');

prices(:,4)=interp1(N225.dates,N225.close,dates,'linear','extrap');

prices(:,5)=interp1(JPY.dates,JPY.fxrate,dates,'linear','extrap');

% convert the indices into CZK and normalize the data

prices=[prices(:,1) prices(:,2).*prices(:,3)...

prices(:,4).*prices(:,5)];

prices_normalized=(prices./repmat(prices(1,:),size(prices,1),1));

list={'PX','S&P 500', 'Nikkei 225'};

% plot the data

figure;

plot(dates, prices_normalized);

datetick('x');

xlabel('Date');

ylabel('Index value (relative)');

legend(list);

%% save data

returns=prices(2:end,:)./prices(1:end-1,:)-1;

save data_PX_SP500_N225;

14 Chapter 1

2015 A. Kresta

Figure 1–4 Evolution of indices in time

1.3.2 Dow Jones Industrial Average dataset

Another dataset we create consists solely of the stocks incorporated in one of the

American stock market indices – Dow Jones Industrial Average (henceforth

DJIA). The components of the index are listed in Appendix B. The dataset we

want to create should cover the period from January 1, 1991 until September 30,

2014. Due to the lack of the historical data we do not include into the dataset the

data of The Goldman Sachs Group, Inc. (Yahoo Finance ticker GS) and Visa Inc.

(Yahoo Finance ticker V). Thus, the dataset consists of only the remaining 28

stocks.

The practical implementation is depicted in Program 1–11. The program cycles

through the list of remaining DJIA components, DJIA_list, downloading each of

them by function downloadyahoo (Program 1–4). Due to the fact that all the time

series are of the same length they can be simply combined into the matrix prices

without dealing with the missing data. At the end of the program discrete returns

are calculated and all the data are saved to the file data_DJIA.mat.

Program 1–11 Historical dataset of the stocks incorporated in DJIA (as of October 6, 2014)

DJIA_list={'MSFT', 'CSCO', 'INTC', 'PFE', 'GE', 'T', 'JPM', 'KO',

'VZ', 'XOM', 'MRK', 'DIS', 'JNJ', 'PG', 'CVX', 'HD', 'WMT', 'AXP',

'NKE', 'DD', 'MCD', 'CAT', 'MMM', 'TRV', 'UNH', 'BA', 'IBM',

'UTX'};

for a=1:length(DJIA_list)

 tic;

 [dates,~,~,~,~,~,prices(:,a)]=downloadyahoo(DJIA_list{a},...

'd',1991,1,1,2014,9,30);

 fprintf(['Symbol ' DJIA_list{a} ' imported in %5.2f'...

'seconds.\n'],toc);

end

returns=prices(2:end,:)./prices(1:end-1,:)-1;

clear a; save data_DJIA;

Data Acquisition 15

Financial Engineering in Matlab: Selected Approaches and Algorithms

1.3.3 Standard & Poor's 500 Dataset

In the same way as DJIA dataset, we can obtain S&P 500 dataset – the historical

data of the stocks incorporated in the Standard & Poor's 500 index. The program

for data acquisition and combination is depicted in Appendix C.

The program is improved version of the Program 1–11. At the beginning of the

algorithm we start with the full list of 501 stock symbols and cycle trough them.

For each symbol we download the data for the period from September 30, 2004

until September 30, 2014.22 If the historical data are downloaded for the whole

period (i.e. we obtain 2,518 daily observations) the stock is included in the dataset.

If there are missing data, the stock is ommited from the dataset.

By this way, the following 53 stocks (tickers) were omitted from the dataset:

ABBV, ADT, ALLE, AMP, AVGO, CFN, CBS, CF, CMG, COV, DLPH, DAL,

DFS, DISCA, DISCK, DG, DPS, EXPE, FB, FSLR, GM, GS, GOOG, ICE, KIM,

KMI, KRFT, LO, LYB, MNK, MPC, MA, MJN, NAVI, NWSA, NLSN, KORS,

PM, PSX, QEP, SNI, SE, TEL, TDC, TWC, TRIP, UA, VIAB, V, WU, WIN,

WYN, XYL, ZTS. The remaining stocks, i.e. 448 stocks, build-up the dataset.

Finally we obtained the matrix in which we have 2,518 daily price observations

(rows) of 448 stocks (columns). From the prices we calculate the discrete returns

and save the data into the file data_SP500.mat.

22 The length of the period was chosen as the compromise between maximum length and

quantity of stocks without missing data over the selected period.

